
DIVISION OF AIR QUALITY AIR QUALITY, ENERGY, AND SUSTAINABILITY

EVALUATION & PLANNING

A&WMA 15TH ANNUAL REGULATORY UPDATE CONFERENCE NOVEMBER 18, 2016

DIVISION OF AIR QUALITY

BUREAU OF EVALUATION & PLANNING

Bureau of Evaluation & Planning

Evaluation Section

Planning Section

GOAL

PROTECT PUBLIC HEALTH

EVALUATION

- Air toxics
- Risk assessment
- Point source modeling
- Air quality forecasting
- Emission statements
- Regulations

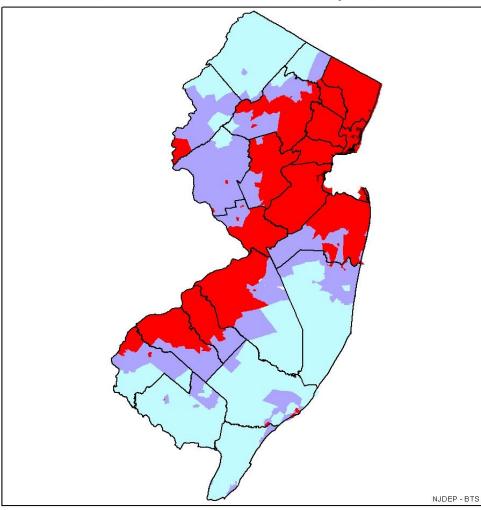
AIR TOXICS OF GREATEST CONCERN IN NEW JERSEY

2005 CHEMICALS OF CONCERN IN NEW JERSEY							
Pollutant	Number/Name of Counties Above Health Benchmarks	Primary Emissions Source					
Acetaldehyde 🛈	21	Background/Secondary					
Acrolein 🛈	21	Background, Nonpoint					
Arsenic Compounds 🛈	19	Background/Secondary					
Benzene 🛈	21	Background, Mobile					
1,3-Butadiene 🛈	21	Background, Mobile					
Cadmium Compounds 🛈	1 (Warren)	Nonpoint, Background					
Carbon Tetrachloride 🛈	21	Background					
Chloroform 🛈	21	Nonpoint, Background					
Chromium VI 🛈	20	Background, Point					
Cobalt Compounds 🛈	7	Point					
1,4-Dichlorobenzene 🛈	8	Nonpoint, Background					
1,3-Dichloropropene 🛈	1 (Hudson)	Nonpoint					
Diesel Particulate Matter 🛈	21	Mobile					
Ethylbenzene 🛈	6	Mobile, Nonpoint					
Ethylene Oxide 🛈	6	Background, Nonpoint					
Formaldehyde 🛈	21	Background/Secondary					
Methyl Chloride 🛈	21	Background					
Naphthalene 🛈	20	Nonpoint, Mobile					
Nickel Compounds 🛈	1	Nonpoint, Point					
РАН/РОМ 🛈	18	Nonpoint					
Perchloroethylene 🛈	8	Nonpoint, Background					
1,1,2-Trichloroethane 🛈	1 (Salem)	Nonpoint					

NJ AIR TOXICS MAPS

2005 NATA Predicted Concentrations in New Jersey

Benzene Risk Under 0.5 times benchmark 0.5 - 1 times benchmark 1 - 5 times benchmark 5 - 10 times benchmark 10 - 50 times benchmark Over 50 times benchmark


Maximum average census tract concentration is 5.4 ug/m³, or 42 times the health benchmark Health benchmark = 0.13 ug/m³

Source Contribution

Point - <1% Nonpoint - 13% On-Road - 30% Nonroad - 13% Background - 44% Secondary - 0%

NJDEP LOOKS AT RISK THAT EPA DOES NOT

2005 Estimated Diesel Particulate Risk in New Jersey from Mobile Sources

Diesel Particulate Risk

Maximum average census tract concentration is 7.9 ug/m³, or 2379 times the health benchmark Health Benchmark = 0.0033 ug/m³

Source Contribution

On-Road - 47% Nonroad - 53%

Based on 2005 NATA concentrations and California cancer risk factor.

8 of X

STATEWIDE

New Jersey Statewide Average 2005 NATA Modeled Air Concentrations Compared to Health Benchmarks								
	Modeled Air	Health Benchmark (ug/m³)	Risk Ratio	% Contribution by Source Category				tegory
Pollutant	Concentration (ug/m³)			Point Sources	Nonpoint Sources	Onroad Mobile	Nonroad Mobile	Background& Secondary
Acetaldehyde	1.9	0.45	4.3	<1%	4%	6%	3%	87%*
Acrolein	0.062	0.020	3.1	<1%	22%	14%	9%	55%*
Arsenic Compounds	0.0005	0.00023	2.3	3%	13%	5%	5%	74%
Benzene	1.3	0.13	10	<1%	13%	30%	13%	44%
1,3-Butadiene	0.095	0.033	2.9	<1%	<1%	40%	17%	43%
Cadmium Compounds	0.00011	0.00024	0.5	12%	44%	0%	1%	43%
Carbon Tetrachloride	0.61	0.067	9.1	0%	<1%	0%	0%	100%
Chloroform	0.13	0.043	3.1	<1%	54%	0%	0%	46%
Chromium (hexavalent form)	0.00024	0.000083	2.9	29%	10%	4%	1%	56%
Cobalt Compounds	0.000093	0.00011	0.8	93%	7%	0%	0%	0%
1,4-Dichlorobenzene	0.12	0.091	1.3	<1%	58%	0%	0%	42%
1,3-Dichloropropene	0.14	0.25	0.5	0%	100%	0%	0%	0%
Diesel Particulate Matter	1.1	0.0033	327	0%	0%	47%	53%	0%
Ethylbenzene	0.34	0.40	0.9	1%	30%	45%	24%	0%
Ethylene Oxide	0.011	0.011	1	12%	18%	0%	0%	70%
Formaldehyde	2.2	0.077	28	<1%	3%	9%	6%	82%*
Methyl Chloride	1.2	0.56	2.2	<1%	1%	0%	0%	99%
Naphthalene	0.13	0.029	4.6	1%	48%	26%	4%	21%
Nickel Compounds	0.0012	0.029	0.6	36%	37%	2%	10%	15%
PAH/POM	0.012	0.0072**	1.6	1%	79%	8%	12%	0%
Perchloroethylene	0.25	0.17	1.4	<1%	61%	0%	0%	39%
1,1,2-Trichloroethane	0.0066	0.063	0.1	<1%	100%	0%	0%	0%

Chemicals with risk ratios greater than or equal to 1 are in **bold**.

Risk Ratios based on noncarcinogenic effects are in *italics*.

The symbol ug/m³ is micrograms per cubic meter, the amount (in micrograms) of a chemical in a cubic meter of air. This is also known as a concentration.

For diesel particulate matter, onroad and nonroad concentrations include a model-estimated background concentration.
*Acetaldehyde, acrolein and formaldehyde concentration estimates include secondary formation, which is the process by which chemicals in the air are transformed into other chemicals.

**PAH/POM is "polycyclic aromatic hydrocarbons/polycyclic organic matter." These define a broad class of compounds. The chemicals making up this class were broken up into 8 groups based on toxicity, and each group was assigned a cancer-weighted toxicity estimate. 0.0072 ug/m³ is the health benchmark average across the 8 groups.

11/18/2016

gnied toxicity estimate. 0.0072 ug/m is the health benchmark average across the 8 grou

Bureau of Stationary Sources Home

Air Permit Information

Applications and Forms

General Permits

Online Permitting Help

Permitting Guidance

Public Notices

RADIUS Information

RADIUS

RADIUS FAQ

RADIUS Reference Tables

Program Information

Annual Combustion Adjustment

Air Quality Forecast for Emergency Generators

Emission Statement Program

MACT

Risk Assessment Guide

State of the Art

Technical Manuals

General Information

AQR Listserv

Contact BoSS

Risk Screening Tools

Estimating Risk from Air Toxics

The NJDEP Air Quality Permitting Program uses risk assessment to evaluate potential effects on public health from facilities seeking permits to emit air toxics. An overview of the risk assessment process can be found in Technical Manual 1003, which also includes details on preparing a risk assessment. However, many permit applications can be evaluated using a risk screening worksheet. Information on risk assessment for various types of emissions can be found below.

Technical Manual 1003: Guidance on Preparing a Risk Assessment Protocol for Air Contaminant Emissions

Procedures to Conduct Risk Assessments to Determine the Incremental Health Risks from New or Modified Equipment

Risk Screening Tools for Air Qualit	ty Permits	
Description	Format	Updated
Cancer Risk Screening Worksheet for Nonroad Diesel Engines	MS Excel ᢂ	7/15
Development of the Risk Screening Worksheet for Nonroad Diesel Engines	Adobe Pdf 🕍	7/15
Revisions to the NJDEP/DAQ Risk Screening Worksheet	Adobe Pdf 🕍	2/16
NJDEP Division of Air Quality Risk Screening Worksheet for Long-Term Carcinogenic and Noncarcinogenic Effects and Short-Term Effects	MS Excel	2/16
Methodology and Assumptions Used to Generate the Revised Level-1 Air Impact Values	Adobe Pdf 🗏	4/07
Risk Screening Policy and Second-Level Risk Screening	Adobe Pdf 🕍	6/07
Toxicity Values for Inhalation Exposure	Adobe Pdf 🗏	2/16
Risk Screening for PAH/POM	Adobe Pdf 🕍	1/13

State of New Jersey DEPARTMENT OF ENVIRONMENTAL PROTECTION

DEP Home | About DEP | Index by Topic | Programs/Units | DEP Online

Home

AQES Home

How is Smog Formed?

Health & Environmental Effects

Federal Ozone Air Quality Standards

What's Your Air Quality Today?

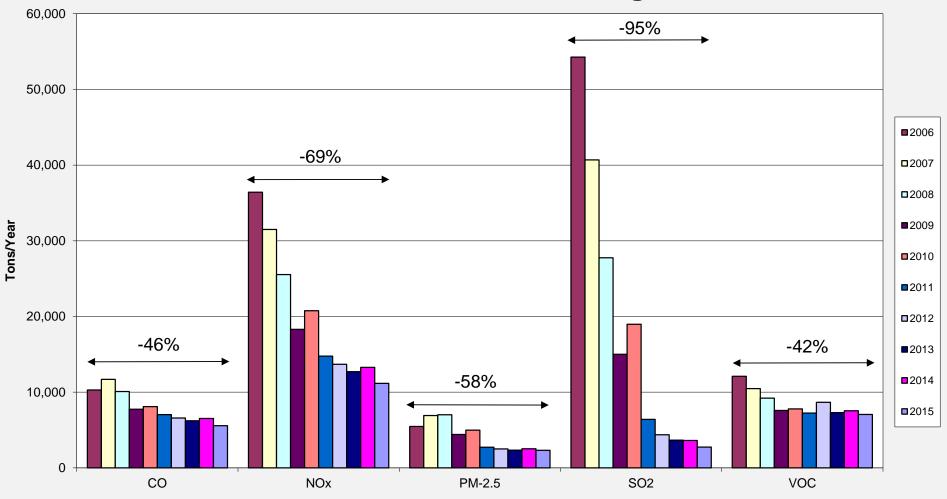
What can you do?

Outreach Materials

Need More Information?

E-mail List

Upcoming Events


Contact Us

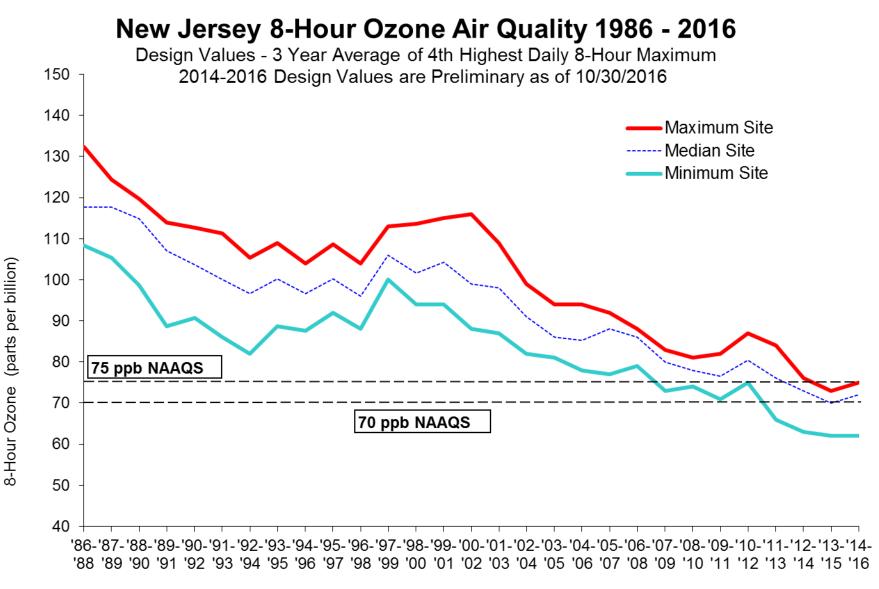
What's Your Air Quality Today?

The USEPA developed the Air Quality Index (AQI) to report daily air quality to the public. The AQI tells you how clean your local air is, and what associated health effects might be a concern in your area. Think of the AQI as a yardstick that runs from 0 to 300. The higher the AQI value, the greater the level of air pollution and the greater the health concern. To make it even easier, USEPA color coded the AQI so you can tell at a glance when you need to take precautions. Since an AQI value of 100 generally corresponds to the national ambient air quality standard for smog, AQI values below 100 are considered safe (green or yellow). When AQI values are above 100, air quality is considered to be unhealthy-at first for certain sensitive groups of people, then for everyone as AQI values get higher (orange and red). New Jersey's level has never exceeded an AQI of 200 – the purple color on the chart – and has rarely been over 150 – the red color on the chart.

do? erials	AQI Values (Ozone Conc. Range)	Air Quality Descriptors	Who Should Be Concerned and What Should They Do About It:
formation? ents	0 – 50 (0-54 ppb)	Good	No health impacts are expected when air quality is in this range.
	51 – 100 (55-70 ppb)	Moderate	Unusually sensitive people should consider limiting prolonged outdoor exertion.
	101 – 150 (71-85 ppb)	Unhealthy for Sensitive Groups	Active children and adults, and people with respiratory disease, such as asthma, should limit prolonged outdoor exertion.

Ten Year Trend on Emissions Reported to the Emission Statement Program

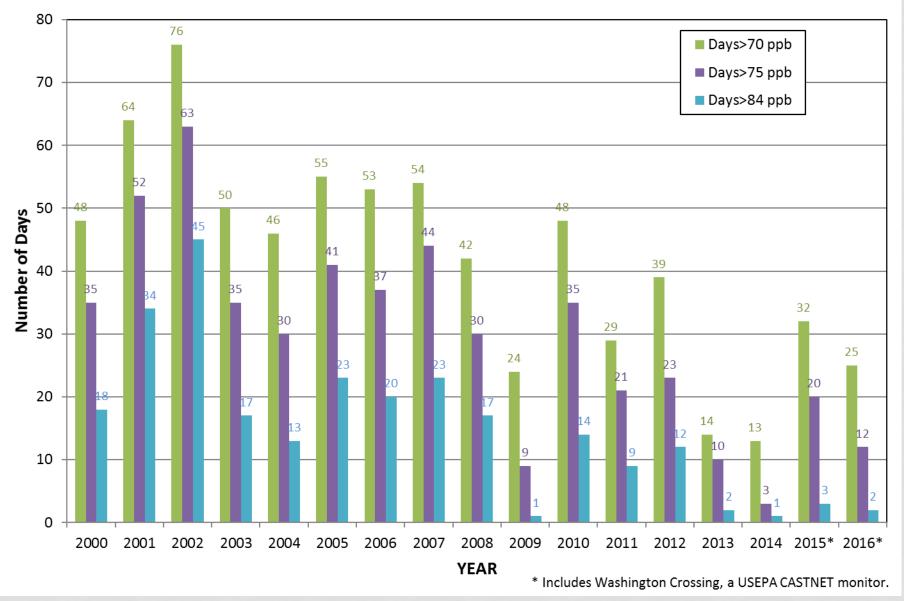
PLANNING


- State implementation Plan (SIP)
- Emissions inventory
- Control strategies
- Regional air quality modeling
- Mobile budgets & conformity
- Regulations

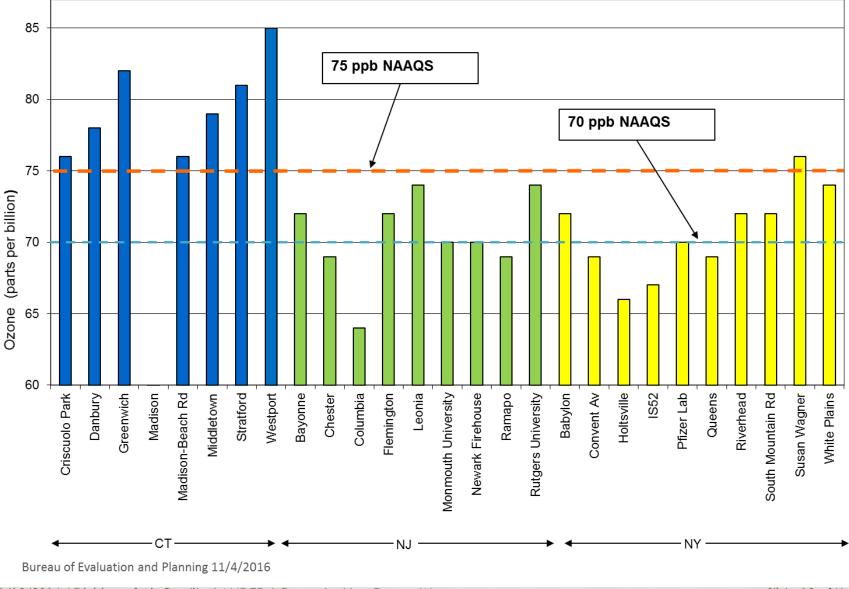
Existing NAAQS and New Jersey Status

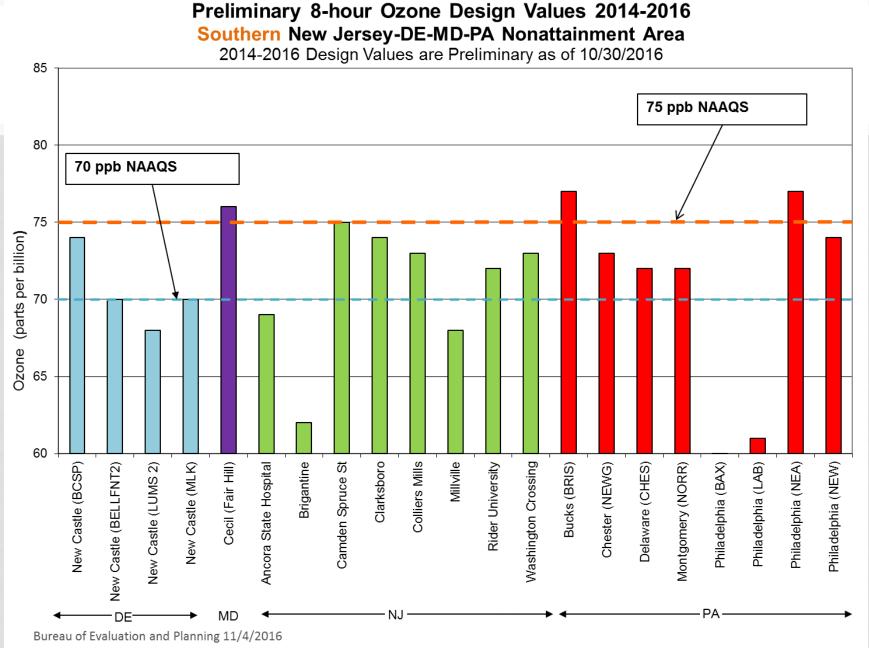
	Primary Standards			Monitoring Data		
Pollutant	Level	Date	Averaging Time	Status (Multi-State NAAs)	Designation/SIP Status	
	0.12 ppm	1979	1-hour	Attaining	Standard revoked/CDDs Final	
Ozone	85 ppb	1997	8-hour	, and an	Nonattainment/CDDs Final	
	75 ppb	2008	8-hour	Not Attaining (other states)	Nonattainment	
	70 ppb	2015	8-hour	Not Attaining	Not Yet Designated	
Regional Haze	Visibility	1999	NA	2018 Goal Achieved	Progress Report Submitted June 2016	
	15.0 µg/m3	1997	Annual		Attainment	
PM2.5	35 µg/m3	2006	24-hour	Attaining		
	12 µg/m3	2012	Annual		Unclassifiable-Attainment	
PM10	150 µg/m3	1987	24-hour	Attaining	Attainment	
	0.03 ppm	1971	Annual		Attainment	
SO2	0.14 ppm	1971	24-hour	Attaining	Attainment	
002	75 ppb	2010	1-hour		Unclassifiable-Attainment is Anticipated	
	53 ppb	1971	Annual	Attaining	Attainment	
NO2	NO2 100 nnh and New		1-hour	Likely to Attain	Unclassifiable-Attainment	
	1.5 µg/m3	1978	Quarterly Average		Attainment	
Lead	0.15 µg/m3	2008	Rolling 3-Month Average	Attaining	Unclassifiable-Attainment	
	9 ppm	1971	8-hour		Attainment/Last Maintenance Plar	
со	35 ppm	1971	1-hour	Attaining	Approved	
	New monitor	2011			No New Requirements	

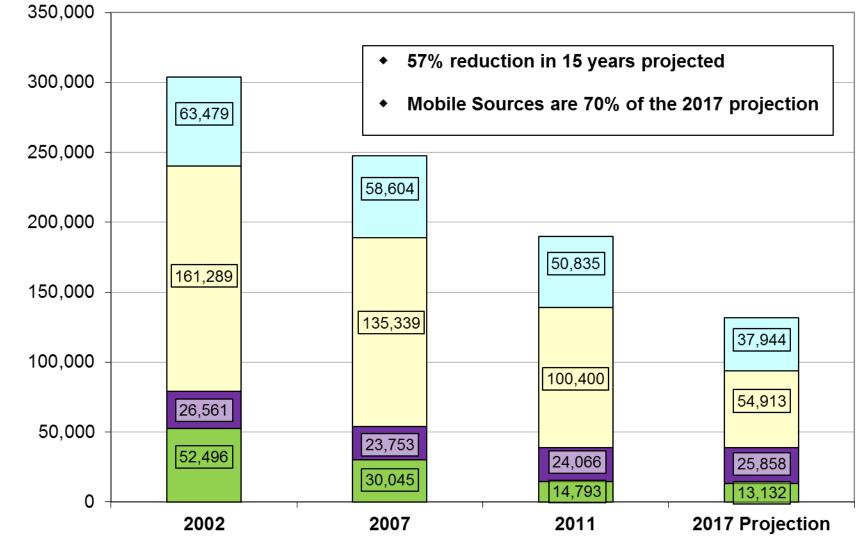
New Jersey's Anticipated NAAQS and Regional Haze Milestones


Pollutant	Standard	NAAQS Promulgation Date	Designation s Effective	110(a) SIPs Due	Attainment Demonstration SIP Due	Attainment Date
Promulgated						
Ozone	75 ppb 8 hour	Mar-08	Jul-12	Complete	Moderate with Bump Up: Jan-17	Moderate: Jul-18
Ozone	70 ppb 8 hour	Oct-15	Dec-17	Oct-18	Dec-20-21	Marginal: 2020 Moderate: 2023 Serious: 2026
Regional Haze	Visibility	Jul-99	NA	Progress Report Complete	Jul-2018	2064
PM2.5	12 μg/m3 annual	Dec-12	Apr-15	Complete	NA	NA
PM2.5	35 µg/m3 daily	Oct-06	Dec-09	Complete	NA	NA
SO2 Primary	75 ppb 1 hour	Jun-10	Sep-16	Complete	NA	NA
NO2 Primary	100 ppb 1 hour	Jan-10	Feb-12	Complete	NA	NA
NO2/SO2 Secondary	No change	Mar-2012	NA	NA	NA	NA
Lead	0.15 µg/m3	Oct-08	Dec-11	Complete	NA	NA
СО	No change, new monitoring	Aug-11	NA	NA	NA	NA
Bureau of Evaluation and Planning 11/4/2016						

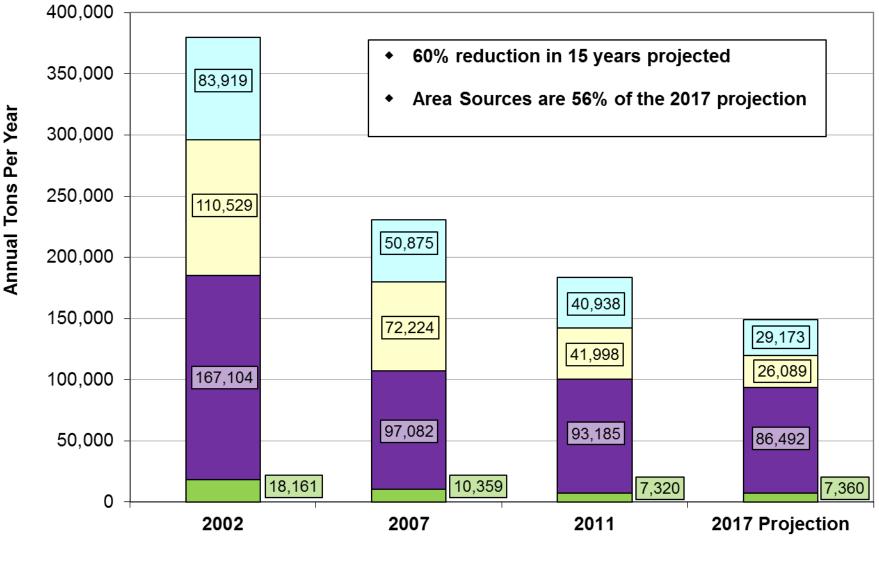
Bureau of Evaluation and Planning 11/4/2016


New Jersey Ozone Exceedance Days 2000-2016


2016 Values are Preliminary as of 10/31/2016


Preliminary 8-hour Ozone Design Values 2014-2016 Northern New Jersey-CT-NY Nonattainment Area

2014-2016 Design Values are Preliminary as of 10/30/2016


New Jersey Statewide Nitrogen Oxides Emission Trend 2002-2017

Annual Tons Per Year

Point	■Area	□Onroad Mobile	□ Nonroad Mobile

New Jersey Statewide Volatile Organic Compound Emission Trend 2002-2017

Point	■Area	Onroad Mobile	■Nonroad Mobile

OTC REGIONAL CONTROL STRATEGIES

NOx Sources

Model Rules

- 1. Power Plants–Oil and Gas-fired Boilers*
- 2. Power Plants–High Electric Demand Day (HEDD) Turbines*
- 3. Power Plants–Stationary Engines
- 4. New Small Gas Heating Boilers
- 5. Non-Road Diesel Idling*
- 6. Aftermarket Catalytic Converters

Categories Under Review

- 7. Power Plants–Coal-fired Boilers
- 8. Distributed and Emergency Generators (Demand Response)
- 9. Industrial/Commercial /Institutional (ICI) Boilers

VOC Sources

Model Rules

- Large VOC Stationary Storage Tanks*
- 2. Autobody Refinishing
- 3. Consumer Products
- 4. Architectural/Industrial Coatings
- 5. Solvent Cleaning (Industrial/Commercial)
- 6. Paint Thinners (Consumer)

Categories Under Review

7. Gasoline Station Vapor Recovery

NJDEP'S EFFORT WITHIN OTC

- Equivalent RACT for all states
- EPA has to resolve transport
- Things to consider for the attainment of 70 ppb ozone NAAQS
 - RACT
 - RACM
 - OTC measures